
Real-time Analytics with
HBase

Alex Baranau, Sematext International
(short version)

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

About me

Software Engineer at Sematext International

http://blog.sematext.com/author/abaranau

@abaranau

http://github.com/sematext (abaranau)

Tuesday, June 5, 12

https://blog.sematext.com/author/abaranau
https://blog.sematext.com/author/abaranau
https://github.com/sematext
https://github.com/sematext

Alex Baranau, Sematext International, 2012

Plan

Problem background: what? why?

Going real-time with append-only updates
approach: how?

Open-source implementation: how exactly?

Q&A

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: our services
Systems Monitoring Service (Solr, HBase, ...)

Search Analytics Service

data collector

data collector

data collector

Data
Analytics &

Storage

Reports

0

25

50

75

100

2007 2008 2009 2010

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: Report Example
Search engine (Solr) request latency

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: requirements

High volume of input data

Multiple filters/dimensions

Interactive (fast) reports

Show wide range of data intervals

Real-time data changes visibility

No sampling, accurate data needed

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: serve raw data?
simply storing all data points doesn’t work

to show 1-year worth of data points collected every second
31,536,000 points have to be fetched

pre-aggregation (at least partial) needed

Data Analytics & Storage

input data aggregated data

data processing
(pre-aggregating)

Reports

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: pre-aggregation

input data
item

aggregated
value

aggregated
value

aggregated
value

processing
logic

aggregation rules
* filters/dimensions
* time range granularities
* ...

OLAP-like Solution

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: RMW updates are slow

more dimensions/filters -> greater output data vs input data
ratio

individual ready-modify-write (Get+Put) operations are slow
and not efficient (10-20+ times slower than only Puts)

... sensor2
value:15.0

sensor2
value:41.0

sensor1
<...> ... input

storage
(HBase)

sensor1
<...>

sensor2
avg : 28.7
min: 15.0
max: 41.0

Get Put Get Put Get Put

... reports
sensor2Get/Scan

...

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Background: batch updates
More efficient data processing: multiple updates
processed at once, not individually

Decreases aggregation output (per input record)

Reliable, no data loss in case of failures

Not real-time

If done frequently (closer to real-time), still a lot of
costly Get+Put update operations

Handling of failures of tasks which partially wrote
data to HBase is complex

Tuesday, June 5, 12

Going Real-time
with

Append-based Updates

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: main goals

Increase record update throughput

Process updates more efficiently: reduce
operations number and resources usage

Ideally, apply high volume of incoming data
changes in real-time

Add ability to roll back changes

Handle well high update peaks

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: how?

1. Replace read-modify-write (Get+Put) operations
 at write time with simple append-only writes (Put)

2. Defer processing of updates to periodic jobs

3. Perform processing of updates on the fly only
 if user asks for data earlier than updates are
 processed.

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: writing updates

... sensor2
value:15.0

sensor2
value:41.0

sensor1
... ... input

sensor1
<...>

sensor2
avg : 22.7
max: 31.0

Put Put Put

...

...

...

sensor1
<...>

sensor2
value: 15.0

sensor2
value: 41.0

...

...

Replace update (Get+Put) operations at write time
with simple append-only writes (Put)1

storage
(HBase)

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: writing updates

sensor1
<...>

sensor2
avg : 22.7
max: 31.0

...

...

...

sensor1
<...>

sensor2
value: 15.0

sensor2
value: 41.0

...

processing updates with MR job

sensor1
<...>

sensor2
avg : 23.4
max: 41.0

... ...
...

Defer processing of updates to periodic jobs 2

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: writing updates

sensor1
<...>

sensor2
avg : 22.7
max: 31.0

...

...

...

sensor1
<...>

sensor2
value: 15.0

sensor2
value: 41.0

...

... reports
sensor1

sensor2
avg : 23.4
max: 41.0

...

storage

Perform aggregations on the fly if user asks
for data earlier than updates are processed3

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: benefits
High update throughput

Real-time updates visibility

Efficient updates processing

Handling high peaks of update operations

Ability to roll back any range of changes

Automatically handling failures of tasks which only
partially updated data (e.g. in MR jobs)

Update operation becomes idempotent & atomic, easy
to scale writers horizontally

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: efficient updates
To apply N changes:

N Get+Put operations replaced with

N Puts and 1 Scan (shared) + 1 Put operation

Applying N changes at once is much more
efficient than performing N individual changes

Especially when updated value is complex (like bitmaps),
takes time to load in memory

Skip compacting if too few records to process

Avoid a lot of redundant Get operations when
large portion of operations - inserting new data

3/7

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: rollback
Rollbacks are easy when updates were not
processed yet (not merged)

To preserve rollback ability after they are
processed (and result is written back), updates
can be compacted into groups

processing updates
... sensor2...

sensor2...

sensor2...
sensor2...

sensor2...

... ... sensor2...

sensor2...

sensor2...

...
written at:

9:00

10:00

11:00
...

...

... ...

5/7

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: idempotency
Using append-only approach helps recover from
failed tasks which write data to HBase

without rolling back partial updates

avoids applying duplicate updates

fixes task failure with simple restart of task

Note: new task should write records with same row
keys as failed one

easy, esp. given that input data is likely to be same

Very convenient when writing from MapReduce

Updates processing periodic jobs are also idempotent

6/7

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Append-only: cons

Processing on the fly makes reading slower

Looking for data to compact (during periodic
compactions) may be inefficient

Increased amount of stored data depending
on use-case (in 0.92+)

Tuesday, June 5, 12

Append-only updates implementation

HBaseHUT

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

HBaseHUT: Overview

Simple

Easy to integrate into existing projects

Packed as a singe jar to be added to HBase client
classpath (also add it to RegionServer classpath to
benefit from server-side optimizations)

Supports native HBase API: HBaseHUT classes
implement native HBase interfaces

Apache License, v2.0

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

HBaseHUT: Overview
Processing of updates on-the-fly (behind
ResultScanner interface)

Allows storing back processed Result

Can use CPs to process updates on server-side

Periodic processing of updates with Scan or
MapReduce job

Including processing updates in groups based on write ts

Rolling back changes with MapReduce job

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

HBaseHUT: API overview

Writing data:

Put put = new Put(HutPut.adjustRow(rowKey));
// ...
hTable.put(put);

Reading data:

Scan scan = new Scan(startKey, stopKey);
ResultScanner resultScanner =
 new HutResultScanner(hTable.getScanner(scan),
 updateProcessor);

for (Result current : resultScanner) {...}

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

HBaseHUT: API overview
Example UpdateProcessor:

public class MaxFunction extends UpdateProcessor {
 // ... constructor & utility methods

 @Override
 public void process(Iterable<Result> records,
 UpdateProcessingResult result) {
 Double maxVal = null;

 for (Result record : records) {
 double val = getValue(record);
 if (maxVal == null || maxVal < val) {
 maxVal = val;
 }
 }

 result.add(colfam, qual, Bytes.toBytes(maxVal));
 }
}

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

HBaseHUT: Next Steps
Wider CPs (HBase 0.92+) utilization

Process updates during memstore flush

Make use of Append operation (HBase 0.94+)

Integrate with asynchbase lib

Reduce storage overhead from adjusting row keys

etc.

Contributors are welcome!

Tuesday, June 5, 12

Alex Baranau, Sematext International, 2012

Qs?
http://github.com/sematext/HBaseHUT

http://blog.sematext.com

@abaranau

http://github.com/sematext (abaranau)

http://sematext.com, we are hiring! ;)

there will be a longer version of the presentation on the web

Tuesday, June 5, 12

https://github.com/sematext/HBaseHUT
https://github.com/sematext/HBaseHUT
https://blog.sematext.com/author/abaranau
https://blog.sematext.com/author/abaranau
https://github.com/sematext
https://github.com/sematext
https://sematext.com
https://sematext.com

