Real-time Analytics with
HBase

Alex Baranau, Sematext International
(short version)

About me

@ Software Engineer at Sematext International

@ http://blog.sematext.com/author/abaranau

& @abaranau

@ http://github.com/sematext (abaranau)

https://blog.sematext.com/author/abaranau
https://blog.sematext.com/author/abaranau
https://github.com/sematext
https://github.com/sematext

Plan

@ Problem background: what? why?

@ Going real-time with append-only updates
approach: how?

@ Open-source implementation: how exactly?

o Q&A

Background: our services

@ Systems Monitoring Service (Solr, HBase, ...)

@ Search Analytics Service

data collector
\f A
Data

data collector (= Analytics & o

/ Storage s

75

data collector

2007 2008 2009 2010

Background: Report Example

Search engine (Solr) request latency

Index || Cache || Request Rate & Latency | Warmup || CPU & Mem || Disk Solr Components || Errors

Solr Request Rate Latency - 2012.05.12 13:00 to 2012.05.12 15:00 (hide extended chart [|stacked %2

@avg. latency @ req. count Granularity: 5 min |
200 ms From: 2012.05.1 13:00 ~|

To: 2012.05.1 15:00 ~|
166.67 ms

main-lucene:light_dismax 'req. count’ = 207 129 Host filter (multi-select) :
13:20:00 to 13:24:59 33 ms

any
all
domU-12

domU-31

W = MW m Hll m mmb
13:00 13:10 13:20 13:30 13:40 13:50 14:00 14:10 14:20 14:30 14:40 : : Request Handler (multi-select) :

main-lucene:light_dismax 'avg. latency’ main-lucene:light_dismax 'req. count’ [l main-lucene:partitioned 'avg. latency’ [l main-lucene:partitioned 'req. count’ no agg regation j

main-lucene:/analysis/doc
Extended Time Period - 2012.05.12 02:00 to 2012.05.12 15:00 (granularity HOUR) (") stacked -g_‘?, Totals Comparison (Selected Period) @ main-lucene: /replication
main-lucene: /update
Clavg. latency @ req. count main-lucene:light_dismax main-lucene:dismax_A
‘req. count' . .
B main-lucene:dismax_B
:znxﬁ:":pam'med main-lucene:light_dismax
- ' main-lucene:partitioned
M — main-lucene:standard

14:00

Tuesday, June 5, 12

Background: requirements

@ High volume of input data
@ Multiple filters/dimensions
@ Interactive (fast) reports
® Show wide range of dafa intervals

@ Real-time data changes visibility

@ No sampling, accurate data needed

Background: serve raw data?

@ simply storing all data points doesnt work

@ to show l-year worth of data points collected every second

31,536,000 points have fo be fetched

@ pre-aggregation (at least partial) needed

Data Analytics & Storage

aggregated data

Input data

—r

data processing

(pre-aggregating)
\ J/?

p

Reports

N

Background: pre-aggregation
OLAP-like Solution

4)

aggregation rules

* filters/dimensions

* time ranqge qranularities
) ge g aggregated

= y value

[: aggregated

iInput data i processing T value

fen lOg Ic \
\§ J
aggregated

value

Tuesday, June 5, 12

Background: RMW updates are slow

@ more dimensions/filters -> greater output data vs input data
ratio

@ individual ready-modify-write (Get+Put) operations are slow
and not efficient (10-20+ times slower than only Puts)

e - - e R — R —— T . -

sensorl sensor?2 | | =14 o) o .
<..> || value:15.0 | **° | value:41.0 ,._,;:;i-!npu'l- A
Ge:/ qu’r Ge:r/ jpm y Put
sensorl sensor2 reporTs
L2 avg. 28.7 < GQ"'/SCCU"I sensore
min: 15.0

5+Orage max: 41.0 o EE‘

(HBase)

Background: batch updates

@ More efficient data processing: multiple updates
processed at once, not individually

@ Decreases aggregation output (per input record)

® Reliable, no data loss in case of failures

@ Not real-time

@ If done frequently (closer to real-time), still a lot of
costly Get+Put update operations

@ Handling of failures of tasks which partially wrote
data to HBase is complex

Clollgle
with
Append-based Updates

Append-only: main goals

@ Increase record update throughput

@ Process updates more efficiently: reduce
operations number and resources usage

@ Ideally, apply high volume of incoming data
changes in real-time

@ Add ability to roll back changes

@ Handle well high update peaks

Append-only: how?

1. Replace read-modify-write (Get+Put) operations
at write time with simple append-only writes (Put)

2. Defer processing of updates to periodic jobs

3. Perform processing of updates on the fly only
if user asks for data earlier than updates are

processed.

Append-only: writing updates

Replace update (Get+Put) operations at write time
with simple append-only writes (Put)

o — ———— T v — St R A e = = e O = =

sensorl sensor?2 % sensor?2 £t ;
value:15.0 | ***| value:41.0 lnpu'l.,
-l ———] : TS . A TR e ¢ y
Put Put
sensorl Sensor2
<...> avg: 22.7
max: 31.0
sensorl
<...>
ﬁ sensor2
value: 15.0
Sforage sensor2

(HBGSQ) “.value: 41.0

Append-only: writing updates

Defer processing of updates to periodic jobs

processing upda’res-.yvi’rh MR job >
.“_—l= % 00

sensorl | sensor2
<...> avg: 22.7 > *** | sensorl sensor2
max: 31.0 <...> avg: 23.4
sensorl = e AL
<...>
sensor2
value: 15.0

sensor2
v \,7 value: 41.0

Append-only: writing updates

Perform aggregations on the fly if user asks
for data earlier than updates are processed

sensorl sensor2 \ reporfs
<. avg. 22.7 \ sensorl
max: 31.0
sensorl El;[
<..>
sensor2
value: 15.0
sensor2
S-I-Orage value: 41.0
5 sensor2
avg: 23.4

max: 41.0

Append-only: benefits

@ High update throughput

@ Real-fime updates visibility

@ Efficient updates processing

@ Handling high peaks of update operations
@ Ability to roll back any range of changes

@ Automatically handling failures of ftasks which only
partially updated data (e.g. in MR jobs)

@ Update operation becomes idempotent & atomic, easy
to scale writers horizontally

3/7

Append-only: efficient updates
@ To apply N changes:
@ N Get+Put operations replaced with

@ N Puts and 1 Scan (shared) + 1 Put operation

@ Applying N changes at once is much more
efficient than performing N individual changes

@ Especially when updated value is complex (like bitmaps),
takes fime to load in memory

@ Skip compacting if foo few records to process

@ Avoid a lot of redundant Get operations when
large portion of operations - inserting new data

5/7

Append-only: rollback

@ Rollbacks are easy when updates were not
processed yet (not merged)

@ To preserve rollback ability after they are
processed (and result is written back), updates
can be compacted into groups

writfen ar: _J _er_cz_c_e_§_s_ing_92d_qte§> __
9:00 Y r-—I-SQnSOrZ YY) Y Sef'ISOrZ YY)
senﬁc.)rz -
10:00 sensor?2 sensor?2
sensor?2
11:00 \/ ensor2 sensor2

6/7

Append-only: idempotency

@ Using append-only approach helps recover from
failed tasks which write data to HBase

@ without rolling back partial updates
@ avoids applying duplicate updates

@ fixes task failure with simple restart of task

@ Note: new task should write records with same row
keys as failed one

@ easy, esp. given that input data is likely to be same

@ Very convenient when writing from MapReduce

@ Updates processing periodic jobs are also idempotent

Tuesday, June 5, 12

Append-only: cons

@ Processing on the fly makes reading slower

@ Looking for data to compact (during periodic
compactions) may be inefficient

@ Increased amount of stored data depending
on use-case (in 0.92+)

Append-only updates implementation

HBaseHUT

HBaseHUT: Overview

@ Simple
@ Easy to integrate into existing projects

@ Packed as a singe jar to be added to HBase client
classpath (also add it to RegionServer classpath to
benefit from server-side optimizations)

@ Supports native HBase API: HBaseHUT classes
implement native HBase interfaces

@ Apache License, v2.0

HBaseHUT: Overview

@ Processing of updates on-the-fly (behind
ResultScanner interface)

@ Allows storing back processed Result

@ Can use CPs to process updates on server-side

@ Periodic processing of updates with Scan or
MapReduce job

@ Including processing updates in groups based on write ts

@ Rolling back changes with MapReduce job

HBaseHUT: API overview

Writing data:

Put put = new Put(HutPut.adjustRow(rowKey));

hes -
hTable.put(put);

Reading data:

Scan scan = new Scan(startKey, stopKey);
ResultScanner resultScanner =
new HutResultScanner(hTable.getScanner(scan),
updateProcessor);

for (Result current : resultScanner) {...}

Tuesday, June 5, 12

HBaseHUT: API overview

Example UpdateProcessor:

public class MaxFunction extends UpdateProcessor {
// ... constructor & utility methods

@Override
public void process(Iterable<Result> records,
UpdateProcessingResult result) {
Double maxVal = null;

for (Result record #irecords) {
double val = getValue(record);

if (maxVal == null || maxVal < val) {
maxVal = val;
s
iy
result.add(colfam, qual, Bytes.toBytes(maxVal));
I3
I3

Tuesday, June 5, 12

HBaseHUT: Next Steps

@ Wider CPs (HBase 0.92+) utilization

D

D

D

@ Process updates during memstore flush

Make use of Append operation (HBase 0.94+)
Integrate with asynchbase lib
Reduce storage overhead from adjusting row keys

etc.

Contributors are welcome!

Qs?

@ http://github.com/sematext/HBaseHUT

@ http://blog.sematext.com

@& @abaranau

@ http://github.com/sematext (abaranau)

@ http://sematext.com, 3

@ there will be a longer version of the presentation on the web

https://github.com/sematext/HBaseHUT
https://github.com/sematext/HBaseHUT
https://blog.sematext.com/author/abaranau
https://blog.sematext.com/author/abaranau
https://github.com/sematext
https://github.com/sematext
https://sematext.com
https://sematext.com

